Archive for the ‘Elektronika’ Category

SCR (silicon-controlled-rectifier)

Telah dibahas pada blog ini, bahwa untuk membuat tiristor menjadi ON adalah dengan memberi arus triger lapisan P yang dekat dengan katoda. Yaitu dengan membuat kaki gate pada tiristor PNPN seperti di Gambar 1a. Karena letaknya yang dekat dengan katoda, pin gate dapat juga disebut pin gate katoda (cathode gate). Seperti inilah SCR dibuat dan simbol SCR digambarkan seperti Gambar 1b. SCR dalam banyak literatur disebut Tiristor saja.

Gambar 1. Struktur SCR

Melalui kaki (pin) gate tersebut komponen ini memungkinkan ditriger menjadi ON, yaitu dengan memberi arus gate. Ternyata dengan memberi arus gate Ig yang semakin besar dapat menurunkan tegangan breakover (Vbo) sebuah SCR. Tegangan ini adalah tegangan minimum yang diperlukan SCR untuk menjadi ON. Pada nilai arus gate tertentu, ternyata akan membuat SCR menjadi ON. Bahkan dengan tegangan forward yang kecil sekalipun misalnya 1 volt saja atau lebih kecil lagi. Kurva tegangan dan arus sebuah SCR terlihat di Gambar 2.

Gambar 2. Karakteristik kurva I-V SCR

Pada Gambar 2. tertera tegangan breakover Vbo, yang jika tegangan forward SCR mencapai titik ini, maka SCR akan ON. Lebih penting lagi adalah arus Ig yang dapat menyebabkan tegangan Vbo turun menjadi lebih kecil. Pada Gambar 2.5 ditunjukkan beberapa arus Ig dan korelasinya terhadap tegangan breakover. Pada datasheet SCR, arus triger gate ini sering ditulis dengan notasi IGT (gate trigger current). Pada Gambar 2.5 ditunjukkan juga arus Ih yaitu arus holding yang mempertahankan SCR tetap ON. Jadi agar SCR tetap ON maka arus forward dari anoda menuju katoda harus berada di atas parameter ini.

Sejauh ini yang dikemukakan adalah bagaimana membuat SCR menjadi ON. Pada kenyataannya, sekali SCR mencapai keadaan ON maka selamanya akan ON, walaupun tegangan gate dilepas atau di short ke katoda. Satu-satunya cara untuk membuat SCR menjadi OFF adalah dengan membuat arus anoda-katoda turun dibawah arus Ih (holding current). Pada Gambar 2. kurva I-V SCR, jika arus forward berada dibawah titik Ih, maka SCR kembali pada keadaan OFF. Berapa besar arus holding ini, umumnya ada di dalam datasheet SCR.

Cara membuat SCR menjadi OFF tersebut adalah sama saja dengan menurunkan tegangan anoda-katoda ke titik nol. Karena inilah SCR atau tiristor pada umumnya tidak cocok digunakan untuk aplikasi DC. Komponen ini lebih banyak digunakan untuk aplikasi-aplikasi tegangan AC, dimana SCR dapat OFF pada saat gelombang tegangan AC berada di titik nol.

Ada satu parameter penting lain SCR, yaitu VGT. Parameter ini adalah tegangan triger pada gate yang menyebabkab SCR ON. Kalau dilihat dari model tiristor, tegangan ini adalah tegangan Vbe pada transistor Q2. VGT seperti halnya Vbe, besarnya kira-kira 0.7 volt. Seperti contoh rangkaian di Gambar 2.6 berikut ini sebuah SCR diketahui memiliki IGT = 10 mA dan VGT = 0,7 volt. Maka dapat dihitung tegangan Vin yang diperlukan agar SCR ini ON adalah sebesar :

Vin = Vr + VGT

Vin = IGT(R) + VGT = 4,9 volt

Gambar 3. Rangkaian SCR

===================================================================

Referensi:

Karakteristik Tiristor

Tiristor berakar kata dari bahasa Yunani yang berarti ‘pintu’. Dinamakan demikian barangkali karena sifat komponen ini yang mirip dengan pintu yang dapat dibuka dan ditutup untuk melewatkan arus listrik. Ada beberapa komponen yang termasuk tiristor antara lain PUT (programmable uni-junction transistor), UJT (uni-junction transistor), GTO (gate turn off switch), photo SCR, Triac dan Diac.

Struktur Tiristor

Ciri-ciri utama sebuah tiristor adalah komponen yang terbuat dari bahan semikonduktor silikon. Walaupun bahannya sama, tetapi struktur P-N junction yang dimilikinya lebih kompleks dibanding transistor bipolar atau MOS. Komponen tiristor lebih digunakan sebagai saklar (switch) daripada sebagai penguat arus atau tegangan seperti halnya transistor.

Struktur tiristor ditunjukkan berikut ini:

Gambar 1. Struktur Tiristor

Struktur dasar tiristor adalah struktur 4 layer PNPN seperti yang ditunjukkan di Gambar 2.1a. Jika dipilah, struktur ini dapat dilihat sebagai dua buah struktur junction PNP dan NPN yang tersambung di tengah seperti di Gambar 1b. Ini tidak lain adalah dua buah transistor PNP dan NPN yang tersambung pada masing-masing kolektor dan basis. Jika divisualisasikan sebagai transistor Q1 dan Q2, maka struktur tiristor ini dapat diperlihatkan seperti di Gambar 2.

Gambar 2 Visualisasi Tiristor dengan Transistor

Terlihat di sini bahwa kolektor transistor Q1 tersambung pada basis transistor Q2 dan sebaliknya kolektor transistor Q2 tersambung pada basis transistor Q1. Rangkaian transistor yang demikian menunjukkan adanya loop penguatan arus di bagian tengah. Dimana diketahui bahwa Ic = b Ib, yaitu arus kolektor adalah penguatan arus basis.

Jika ada arus sebesar Ib yang mengalir pada basis transistor Q2, maka akan ada arus Ic yang mengalir pada kolektor Q2. Arus kolektor ini merupakan arus basis Ib pada transistor Q1, sehingga akan muncul penguatan pada arus kolektor transistor Q1. Arus kolektor transistor Q1 tidak lain adalah arus basis bagi transistor Q2. Demikian seterusnya sehingga makin lama sambungan PN dari tiristor ini di bagian tengah akan mengecil dan hilang. Tertinggal hanyalah lapisan P dan N dibagian luar.

Jika keadaan ini tercapai, maka struktur yang demikian tidak lain adalah struktur dioda PN (anoda-katoda) yang sudah dikenal. Pada saat yang demikian, disebut bahwa tiristor dalam keadaan ON dan dapat mengalirkan arus dari anoda menuju katoda seperti layaknya sebuah dioda.

Gambar 3. Tiristor diberi tegangan

Jika pada tiristor ini diberi beban lampu DC dan diberi supplay tegangan dari nol sampai tegangan tertentu seperti di Gambar 3. Ketika tegangan dinaikkan dari nol maka lampu akan tetap padam karena lapisan N-P yang ada ditengah akan mendapatkan reverse-bias (teori dioda). Pada saat ini disebut tiristor dalam keadaan OFF karena tidak ada arus yang dapat mengalir atau sangat kecil sekali. Arus tidak dapat mengalir sampai pada suatu tegangan reverse-bias tertentu yang menyebabkan sambungan NP ini jenuh dan hilang. Tegangan ini disebut tegangan breakdown dan pada saat itu arus mulai dapat mengalir melewati tiristor sebagaimana dioda umumnya. Pada tiristor tegangan ini disebut tegangan breakover Vbo.

==================================================================

Referensi:

DTMF (Dual Tone Multiple Frequency)

Dual Tone Multiple Frequency (DTMF) adalah teknik mengirimkan angka angka pembentuk nomor telpon yang di-kode-kan dengan 2 nada yang dipilih dari 8 buah frekuensi yang sudah ditentukan. 8 frekuensi tersebut adalah 697 Hz, 770 Hz, 852 Hz, 941 Hz, 1209 Hz, 1336 Hz, 1477 Hz dan 1633 Hz, seperti terlihat dalam Gambar dibawah angka 1 di-kode-kan dengan 697 Hz dan 1209 Hz, angka 9 di-kode-kan dengan 852 Hz dan 1477 Hz. Kombinasi dari 8 frekuensi tersebut bisa dipakai untuk meng-kode-kan 16 tanda, tapi pada pesawat telepon biasanya tombol ‘A’ ‘B’ ‘C’ dan ‘D’ tidak dipakai.

Gambar Kombinasi nada DTMF

Teknik DTMF meskipun mempunyai banyak keunggulan dibanding dengan cara memutar piringan angka, tapi secara tehnis lebih sulit diselesaikan. Alat pengirim kode DTMF merupakan 8 rangkaian oscilator yang masing-masing membangkitkan frekuensi ‘aneh’ di atas, ditambah dengan rangkaian pencampur frekuensi untuk mengirimkan 2 nada yang terpilih.

Teknik DTMF meskipun mempunyai banyak keunggulan dibanding dengan cara memutar piringan angka, tapi secara tehnis lebih sulit diselesaikan. Alat pengirim kode DTMF merupakan 8 rangkaian oscilator yang masing-masing membangkitkan frekuensi ‘aneh’ di atas, ditambah dengan rangkaian pencampur frekuensi untuk mengirimkan 2 nada yang terpilih.

Tabel Frekuesi pada tombol-tombol DTMF

Dari table di atas terlihat bahwa di dalam DTMF ada 16 nada berbeda. Masing-masing nada merupakani penjumlahan dari dua buah frekuensi, satu dari suatu rendah dan satu dari frekuensi tinggi. Ada empat frekuensi berbeda pada setiap kelompok. Pada telepon hanya menggunakan 12 nada dari 16 nada yang ada, terdiri dari 4 baris (R1, R2, R3 dan R4) dan 3 kolom (C1, C2 dan C3). kolom dan Baris memilih frekuensi dari yang rendah dan frekuensi tinggi menggolongkan berturutturut. Masing-Masing tombol ditetapkan oleh penempatan kolom dan baris nya. Sebagai contoh tombol “5” terdapat pada baris 1 (R2) dan kolom 1 (C2) sehingg mempunyai frekuensi 770+ 1336= 2106 Hz . Tombol “9” terdapat pada baris 2 (R3) dan kolom 2 (C3) dan mempunyai suatu frekuensi 852+ 1477= 2329 Hz.

Tranceiver DTMF MT8888

MT8888 merupakan penerima dan pengirim DTMF, selain bisa berfungsi sebagai penerima DTMF, bisa pula dipakai untuk membangkitkan nada DTMF sesuai dengan angka biner yang diterimanya.

Saluran data (data bus) dan sinyal-sinyal kontrol MT8888 dirancang sesuaikan dengan mikrokontroler buatan Mitel.

Gambar IC Tranceiver DTMF buatan Mitel

Diagram waktu proses pengambilan/pengiriman data dari/ke MT8888 terlihat di Gambar berikut :

Gambar Diagram waktu pengambilan/pengiriman data dari/ke MT8888

Register Kontrol

Kapasitas Register MT8888 hanya 4 bit, namun ada 7 hal yang diatur melalui Register Kontrol, dengan demikian Register Kontrol dibagi menjadi dua bagian, seperti terlihat dalam Tabel 3.1. Saat pertama kali menyimpan data ke Register Kontrol selalu diterima oleh Bagian I Register Kontrol, jika RSEL (bit 3) = ‘1’ maka pengiriman data berikutnya akan diterima oleh Bagian II Register Kontrol.

Kegunaan dari masing-masing bit dalam Register Kontrol dibahas di bawah.

Tabel Susunan bit dalam Register Kontrol

Register Status

Register Status dipakai untuk memantau keadaan dari MT8888, kegunaan dari masing-masing bit dalam Register Kontrol dibahas di bawah.

Tabel Susunan bit dalam Register Status

Pembangkit nada DTMF

MT8888 membangkitkan nada DTMF sesuai dengan data yang diisikan ke Transmit Data Register. Selama TOUT (bit 0 di Register Kontrol bagian I) bernilai ‘1’ nada DTMF yang dibangkitkan MT8888 disalurkan lewat kaki TONE (kaki 8).

Ada 2 cara untuk mengirimkan nada DTMF:

1. Nada DTMF dibangkitkan dan dihentikan secara manual.

2. Nada DTMF dibangkitkan secara mode burst.

Mode burst adalah mode yang dipakai dalam peralatan telepon tertentu, dalam pemakaian umum yang dipakai adalah mode manual.


Gambar Nada DTMF dalam mode burst

Penerima nada DTMF

Rangkaian penerima nada DTMF MT8888 selalu memantau sinyal yang masuk, jika sinyal tersebut mengandung nada DTMF dan nada itu lamanya melebihi konstanta waktu yang ditentukan, maka RDRF (bit 2 di Register Status) akan menjadi ‘1’. Keadaan di RDRF bisa diteruskan ke kaki IRQ/CP (kaki 15) sebagai sinyal permintaan interupsi ke mikrokontroler, hal ini dilakukan dengan cara men-‘satu’-kan IRQ (bit 2 di Register Kontrol bagian I). Dalam keadaan ini kaki IRQ/CP=’0’ kalau RDRF bernilai ‘1’ dan IRQ/CP=’1’ kalau RDRF bernilai ‘0’. RDRF kembali menjadi ‘0’ dengan sendirinya setelah isi Register Status dibaca.

Menentukan keadaan awal

Sebelum dipakai, dalam waktu 100 mili-detik setelah dihidupkan, keadan awal dari MT8888 harus diatur dulu dengan me-‘nol’-kan isi semua register, termasuk Register Kontrol Bagian I dan Bagian II serta Register Status.

/===================================================================

Sumber: http://iddhien.com/index.php?option=com_content&task=view&id=29&Itemid=106

Dekoder 74LS47 untuk seven segment

Dekoder driver 74LS47 merupakan IC TTL yang mempunyai input 4 bit yaitu A, B, C, dan D serta 3 input ekstra RBI, RBO, LT. Ketiga input ekstra tersebut diaktifkan oleh suatu level rendah. Bilangan BCD tersebut dikodekan sehingga membentuk kode seven segmen yang akan menyalakan ruas-ruas yang sesuai pada peraga LED di dalamnya.

Gambar IC Dekoder 74LS47

Input lamp test (LT) akan menyalakan setiap segmen untuk melihat apakah segmen-segmen tersebut beroperasi. Selanjutnya Ripple Blanking Input RBI akan mematikan semua segmen bila rangkaian diaktifkan. Berikut ini adalah bentuk tampilan yang bisa ditampilkan oleh display seven segmen :

Gambar Bentuk Tampilan 7 segmen

Dari gambar diatas bisa diketahui bahwa hanya sebagian kecil saja dari karakter yang dapat ditampilkan oleh display 7 segmen. Cara mendapatkan bentuk tampilan seperti pada gambar diatas diketahui dari table kebenaran dekoder 74LS47 berikut :

Table Table Kebenaran dari Dekoder 74LS47

Aplikasi decoder 74LS47 pada seven segmet:

\\==================================================================

bacaan terkait di blog ini:

1. aplikasi-seven-segmen-dengan-mikrokontroller-atmega8535 klik disini

Resistor sebagai Pembagi Tegangan

Resitor merupakan komponen pasif yang bersifat menghambat. Selain fungsi menghambat resistor juga memiliki fungsi pembagi tegangan. Rangkaian pembagi tegangan yang disusun dengan resistor terlihat seperti Gambar 1.

Gambar 1. Rangkaian pembagi tegangan

Besarnya Vout memenuhi persamaan:

Rangkaian pembagi tegangan di atas menghasilkan Vout yang konstan. Untuk mendapatkan nilai Vout yang dapat diatur tegangannya maka rangkaian di atas dapat diubah dengan sebuah potensiometer. Gambar potensiometer sebagai pembagi tegangan terlihat seperti Gambar 2.

Gambar 2. Potensiometer sebagai pembagi tegangan